A modal bispectrum estimator for the CMB bispectrum

Michele Liguori Institut d'Astrophysique de Paris (IAP)

Fergusson, Liguori and Shellard (2010)

Outline

- Summary of the technique
 - 1. Polynomial modes
 - 2. What we measure:
 - f_{NL} , mode spectrum, shape reconstruction
- Results from WMAP-5
 - 1. Model independent: mode spectrum and bispectrum reconstr.
 - 2. Scale independent shapes
 - 3. Running shape: feature in the inflaton potential
- Extension to *Planck*
- Summary

Bispectrum domain

 $B_{\ell_1\ell_2\ell_3} = \sum_{\ell_1} \ell_1$ $\begin{pmatrix} \ell_{2} & \ell_{3} \\ m_{2} & m_{3} \end{pmatrix} \left\langle a_{\ell_{1}}^{m_{1}} a_{\ell_{2}}^{m_{2}} a_{\ell_{3}}^{m_{3}} \right\rangle ; b_{\ell_{1}\ell_{2}\ell_{3}} = h_{\ell_{1}\ell_{2}\ell_{3}} B_{\ell_{1}\ell_{2}\ell_{3}}$ m_1

Mode expansion

We define the scalar product:

$$\langle f,g \rangle = \sum_{\ell_1 \ell_2 \ell_3} w_3(\ell_1,\ell_2,\ell_3) f(\ell_1,\ell_2,\ell_3) g(\ell_1,\ell_2,\ell_3)$$

We expand the bispectrum in terms of separable orthonormal functions defined in the shaded domain (tetrapyd) with scalar product above.

Mode estimation

Goal: for a given dataset, extract best-fit β_i , i=1,...,p

- The basis elements pictured on the right *are by construction factorizable*
- Apply position space cubic statistics by Komatsu, Spergel and Wandelt (2003) to each separable template on the right to estimate the amplitudes β_i
- Orthonormal basis $\rightarrow \beta_i$ uncorrelated (in first approx.)

f_{NL} estimation

• Expand theoretical shape until a good level of correlation is achieved

- Extract mode amplitude from the data up to the highest mode in the shapes under study
- Correlate to get f_{NL}

$$\hat{f}_{NL} = \frac{\vec{\alpha}_{shape} \cdot \vec{\beta}_{obs.}}{N}$$

WMAP (5-year) mode reconstruction

Fergusson, Liguori and Shellard 2010

- $l_{max} = 500$ V+W coadded map
- 31 modes

•

• Inverse variance pre-filtering

WMAP shape reconstruction using first31 modes (distance ordering).Comparison with local and equilateral

WMAP f_{NL} estimation

Scale invariant shapes:

- ✓ Constant
- ✓ Local
- ✓ Warm
- ✓ Flat
- ✓ Equilateral family
 - Separable ansatz
 - DBI
 - Ghost inflation
 - Single field
- ✓ Orthogonal

Running shapes:

✓ Sharp feature in the inflaton potential

$\frac{\text{Local}}{(f_{\text{NL}} = 39 \pm 20)}$

$f_{NL}=54.4\pm29.4$

Equilateral $(f_{NL} = 155 \pm 140)$

 $f_{NL} = 143.5 \pm 151.2 \text{ (sep.)}$ $f_{NL} = 146.0 \pm 144.5 \text{ (DBI)}$ $f_{NL} = 138.7 \pm 165.4 \text{ (ghost)}$ $f_{NL} = 142.1 \pm 131.2 \text{ (single)}$

 $\begin{array}{l} \text{Orthogonal} \\ (f_{\text{NL}} = -214 \pm 110) \end{array}$

 $f_{NL}^{}$ = -79.4 ± 133.3

Flat

$f_{\rm NL} = 18.1 \pm 14.9$

Constant

$f_{NL} = 149.4 \pm 116.8$

Scale invariance breaking feature

Sinusoidal running in the shape (parameters: amplitude, period, phase)

$$S \sim f_{NL}^{feat.} \sin\left(\frac{K}{k_*} + \phi\right)$$

(Chen et al. 2006)

Scale Phase	150	200	250	300	400	500	600	700
0	57 (30)	-52(33)	-25(32)	1 (30)	1 (27)	8 (26)	18 (25)	23 (25)
$\pi/8$	67 (36)	-26(27)	-36(30)	-6(25)	-4(26)	-2(27)	12(26)	20 (25)
$\pi/4$	68(42)	-10(29)	-43(30)	-11(21)	-7(25)	-10(27)	-1(28)	13(27)
$3\pi/8$	49 (46)	7 (34)	-42(32)	-18(24)	-9(25)	-14(26)	-13(28)	-2(28)
$\pi/2$	15(46)	32 (41)	-30(35)	-32(34)	-10(25)	-16(25)	-18(27)	-14(28)
$5\pi/8$	-19(42)	63 (46)	-15(35)	-38(43)	-11(25)	-16(25)	-20(26)	-20(27)
$3\pi/4$	-39(35)	87 (48)	0 (35)	-25(41)	-11(26)	-15(25)	-21(25)	-23(26)
$7\pi/8$	-48(30)	81 (43)	13 (34)	-11(35)	-7(27)	-13(25)	-20(25)	-23(25)

- Amplitude computed for all phases and several scales between l=150 and l=700
- 64 combinations of scale and phase

Mode decomposition at *Planck* resolution

• Extend mode decomposition to much higher 1_{max}. That requires many more modes.

 $l_{max}: 500 \rightarrow 2000 \qquad n_{side}: 512 \rightarrow 2048$ $p_{max}: 7 \rightarrow 18 \qquad n_{modes}: 31 \rightarrow 274$

- Nothing conceptually different, but numerical stability and optimization issues required several technical modifications to the original WMAP pipeline.
- Currently being used on *Planck* data.

Summary

✓ We introduced an estimator of primordial NG based on a separable modal expansion of the bispectrum.

Nice features of the modal estimator:

- 1. It allows to separate any shape in a general clear mathematical framework.
- It allows *model independent* reconstruction of the 3-point function
- 3. It makes multi-shape studies faster and simpler
- 4. Through mode spectrum and shape reconstruction it allows a better monitoring of potential contaminants
- We applied our estimators to WMAP 5-yr data and constrained a large number of models, *including first constraints on feature models*
- ✓ We extended our pipeline to high angular resolutions and we are now applying it to Planck data (as well as WMAP7)

Bispectrum estimator

WMAP constraints

	WMAP 7-yrs	WMAP 5-yrs
Local	$-10 < f_{NL} < 74$	$-4 < f_{NL} < 80$
Equilateral	$-214 < f_{NL} < 266$	$-125 < f_{NL} < 435$
Orthogonal	$-410 < f_{NL} < 6$	$-369 < f_{NL} < 71$

(95% c.l)